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The property of dominant integrability was introduced by C. F. Osgood
and O. Shisha [6]. One of the motivations in introducing this concept was
the problem: under what conditions can quadrature formulas effective for
Riemann integrable functions on [0,1] be used for the numerical
evaluation of improper Riemann integrals {{, f(x)dx? It turns out that,
for a function fon (0, 1], its dominant integrability is a necessary and suf-
ficient condition for j('H f(x)dx to converge and to equal lim,_ ., @*(f)
for every sequence (@), of quadrature formulas of a very general type.
(For details see [6, 7].)

One of the definitions of dominant integrability is the following ([6],
second line of Corollary 2, Definition 4, and Theorem 3): Ler [ be ua
complex function on (0, 1]. Dominant integrability of f means Riemann
integrability of f on each closed subinterval of (0, 1] and the existence of a
real, nonnegative function g, monotone nonincreasing on (0, 1], with
&, &g(x)dx < o, satisfying throughout (0, 1], | f(x)] < g(x).

Dominant integrability turns out to be a very simple instance of
generalized Riemann integrability, an elementary property equivalent to
Perron and restricted Denjoy integrability but more general than Lebesgue
integrability. For details see [ 1, 3]. The simplicity and great power of the
concept of generalized Riemann integrability should make it the standard
concept of integrability.
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Our main purpose here is to state and prove

THEOREM 1. Let [ be a complex function on (0, 1] and let 0<d<1. A
necessary and sufficient condition for [ to be dominantly integrable is that it
be Riemann integrable on each [a, 1], 0 <a <1, and that

Yo ow(f, 00,07 Yol <o,
FAa!
where w( f, 07,8 ") is the oscillation of [on [/, 67 '), namely,
sup{| (1) —=f(1,)]: 0" <1, <1, <07 1.

Proof. Necessity: By the definition of dominant integrability in Sec-
tion 1, f 1s Riemann integrable (and, hence, bounded) on each [q, 1],
O<a<1.Forevery te(0,1], let

fy=supl| f(x)]:r<x <,
Forj=1,2,..ifé'<t,<1,<8' ', then

L) =S S LA+ £ ()] < 2/(87)

and, hence,

w(f, 87,8 )< 2f(87).

Thus, for n=1, 2, ..,

" nt

S (/5,5 o2 Y f8) 6 =2 Z fer et

je=1 j=1 j=
:2(1~6)"’H £(87 Y6 T —oY)

=2

o

<21-9) '] Ax)dx
<2(175)"'Jn5 F(x)dx < oo
0+

(see [6], Definition 1, Corollary 2 and the first sentence of its proof).
Hence the desired conclusion.
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Sufficiency: For n=1, 2, ... and x€ (0, 1], let

Sow(f 6,87y il §M<x<d
gulx)= (7=t
0, otherwise.

For every xe (0, 1], say,
"< xgé N, n>=1 an integer,
set

gx)=1f() +g(x)=1/(D+ ¥ gilx)

k=1

so that g i1s monotone nonincreasing on (0, 1]. Then

S ow(f, 8,8 =(1=8) Y Y w(f.ol,8 Nyt !
j=1 Iy
2 k
—8) Y Y w(f 8,80ty ok
k=171
o k
= Z < w(f, 87,6/ 1)) (6% 165
k=1 \j=1

-y Ll g0 de=[ gtoyde—| 101
R 0+

If xe(0, 17, say, (1), then
n-1

) =f(D)=f(x)=f(5" +Zf5k S

< f)y =7 ("l + Z | f(6%) = f (5" 1)

k=1
n—-1

Sw(f, 07, 8" )+ Y w(f, 8565 1)
k=1

=Y w(f, 05,05 ) =g,(x)

k=1

|SCA <1 S(D)] + g, (x) = g(x).

Hence f is dominantly integrable.
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The concept of dominant integrability has been extended in [4] to

complex functions on 7=(0,1]x(0, 1]. Using [4], one can imitate the
proof of Theorem 1 and prove

THEOREM 2. Let f be a complex function on I and let 0<d<1. A

necessary and sufficient condition for f to be dominantly integrable on I is
that it be Riemann integrable on each [a, 1]1x[b, 1], O<a<1, 0<b<]1,
and that

S w188 X056 ) <o,

k=1

where the coefficient of 8+ * is the oscillation of f on

R, =1[8,0" "Ix[656% '],

namely, supl| f(P)) — f(P))|: P, P,e R, }.
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